Instructions for ase 2-CAT high sensitive ELISA

RUO

2-CAT high sensitive ELISA

1. Intended use and principle of the test

Enzyme Immunoassay for the quantitative determination of adrenaline (epinephrine) and noradrenaline (norepinephrine). Flexible test system for various biological sample types and volumes.

Adrenaline (epinephrine) and noradrenaline (norepinephrine) are extracted by using a cis-diol-specific affinity gel, acylated and then converted enzymatically.
The competitive ELISA kit uses the microtiter plate format. The antigen is bound to the solid phase of the microtiter plate. The derivatized standards, controls and samples and the solid phase bound analytes compete for a fixed number of antibody binding sites. After the system is in equilibrium, free antigen and free antigenantibody complexes are removed by washing. The antibody bound to the solid phase is detected by an antirabbit IgG-peroxidase conjugate using TMB as a substrate. The reaction is monitored at 450 nm . Quantification of unknown samples is achieved by comparing their absorbance with a standard curve prepared with known standard concentrations.

2. Procedural Cautions, Guidelines and Warnings

(1) This kit is intended for professional use only. Users should have a thorough understanding of this protocol for the successful use of this kit. Only the test instruction provided with the kit is valid and has to be used to run the assay. Reliable performance will only be attained by strict and careful adherence to the instructions provided.
(2) The principles of Good Laboratory Practice (GLP) have to be followed.
(3) In order to reduce exposure to potentially harmful substances, wear lab coats, disposable latex gloves and protective glasses where necessary.
(4) All kit reagents and specimens should be brought to room temperatureand mixed gently but thoroughly before use. Avoid repeated freezing and thawing of reagents and specimens.
(5) For dilution or reconstitution purposes, use deionized, distilled, of utra-pure water.
(6) The microplate contains snap-off strips. Unused wells must becstored at $2-8^{\circ} \mathrm{C}$ in the sealed foil pouch with desiccant and used in the frame provided. Microtiter strips which are removed from the frame for usage should be marked accordingly to avoid any mix-up.
(7) Duplicate determination of sample is highly recommended to be able to identify potential pipetting errors.
(8) Once the test has been started, all steps should becompleted without interruption. Make sure that the required reagents, materials and devices are prepared ready at the appropriate time.
(9) Incubation times do influence the results. Albwells should be handled in the same order and time intervals.
(10) To avoid cross-contamination of reagents, use new disposable pipette tips for dispensing each reagent, sample, standard and control.
(11) A standard curve must be established for each run.
(12) The controls should be included in each run and fall within established confidence limits. The confidence limits are listed in the QC-Report
(13) Do not mix kit components with different lot numbers within a test and do not use reagents beyond expiry date as shown on the labels.
(14) Avoid contact with Stop Sotytion containing $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. It may cause skin irritation and burns. In case of contact with eyes or skin, rinse off immediately with water.
(15) TMB substrate has an ifritant effect on skin and mucosa. In case of possible contact, wash eyes with an abundant volume of water and skin with soap and abundant water. Wash contaminated objects before reusing them.
(16) For informationon hazardous substances included in the kit please refer to Safety Data Sheet (SDS). The Safety Data ${ }^{\text {Sheet for }}$ fhis product is made available directly on the website of the manufacturer or upon request.
(17) Kit reagents must be regarded as hazardous waste and disposed according to national regulations.
(18) In case of any severe damage to the test kit or components, the manufacturer has to be informed in wrifing, at the latest, one week after receiving the kit. Severely damaged single components must not be used for a test run. They must be stored properly until the manufacturer decides what to do with them. If it is decided that they are no longer suitable for measurements, they must be disposed of in accordance with national regulations.

3. Storage and stability

Store the unopened reagents at $2-8{ }^{\circ} \mathrm{C}$ until expiration date. Do not use components beyond the expiry date indicated on the kit labels. Once opened the reagents are stable for 2 months when stored at $2-8^{\circ} \mathrm{C}$. Once the resealable pouch has been opened, care should be taken to close it tightly with desiccant again.

4．Materials

4．1 Content of the kit

BA D－0032	四 96	Microtiter Plate－Ready to use
Content：	1×96 wells，empty in a resealable pouch	
BA D－0090	FOILS \quad Adhesive Foil－Ready to use	
Content：	Adhesive Foils in a resealable pouch	
Volume：	2×4 foils	

BA E－0030 WASH－CONC 50x Wash Buffer Concentrate－Concentrated 50x
Content：Buffer with a non－ionic detergent and physiological pH
Volume： $2 \times 20 \mathrm{ml} /$ vial，light purple cap
BA E－0040 CONJUGATE Enzyme Conjugate－Ready to use
Content：Goat anti－rabbit immunoglobulins，conjugated with peroxidase
Volume： $2 \times 12 \mathrm{ml} /$ vial，red cap

BA E－0055

SUBSTRATE Substrate－Ready to use
Content：Chromogenic substrate containing tetramethylbenzidine，substrate Quffer and hydrogen peroxide
Volume： $2 \times 12 \mathrm{ml} /$ black vial，black cap
BA E－0080 STOP－SOLN Stop Solution－Ready to use
Content：$\quad 0.25 \mathrm{M}$ sulfuric acid
Volume：$\quad 2 \times 12 \mathrm{ml} /$ vial，light grey cap
Hazards identification：

H290 May be corrosive to metals．
BA E－0131 \quad 四 $A D R \mid$ MN \quad Adrenaline Microtiter Strips－Ready to use
Content： 1×96 well（ 12×8 ）antigen precodated microwell plate in a resealable blue pouch with desiccant

BA E－0231
四 NAD NMN
Noradrenaline Microtiter Strips－Ready to use
Content： 1×96 well (12×8) antigen precoated microwell plate in a resealable yellow pouch with desiccant

BA E－5110 ADR－AS \quad Adrenaline Antiserum－Ready to use
Content：Rabbit anti－adrenaline antibody，blue coloured
Volume：$\quad 1 \times 6 \mathrm{ml} /$ val，blue cap
BA E－5210
NAD－AS
Noradrenaline Antiserum－Ready to use
Content：
Rabbit anti－noradrenaline antibody，yellow coloured
Volume：$\quad \int^{P} \times 6 \mathrm{ml} /$ vial，yellow cap

BA E－6612
Conten 8^{8}
Volume：
ACYL－REAG
Acylation Reagent－Ready to use
Acylation reagent in DMSO
$1 \times 3 \mathrm{ml} /$ vial，white cap
BA R－0050
ADJUST－BUFF
Adjustment Buffer－Ready to use
Content：
TRIS buffer
Volume：
BA R－4617
TE－BUFF
TE Buffer－Ready to use
Content：TRIS－EDTA buffer
Volume： $1 \times 4 \mathrm{ml} /$ vial，brown cap

Standards and Controls - Ready to use

Cat. no.	Component	Colour/ Cap	Concentration $\mathrm{ng} / \mathrm{ml}$		Concentration nmol/I		Volume/ Vial
			ADR	NAD	ADR	NAD	
BA R-5601	Standard A	white	0	0	0	0	4 ml
BA R-5602	STANDARD ${ }^{\text {B }}$	light yellow	0.5	0.2	2.7	1.2	4 ml
BA R-5603	STANDARD C	orange	1.5	0.6	8.2	3.5	4 ml
BA R-5604	STANDARD ${ }^{\text {d }}$	dark blue	5	2	27	12	4 ml
BA R-5605	STANDARDE	light grey	20	8	109	47	4 ml
BA R-5606	STANDARD F	black	80	32	437	189	4
BA R-5651	CONTROL1 1 light green Refer to QC-Report for expected value and CONTROLD 2 dark red acceptable range!						$4 \mathrm{mb}$
BA R-5652							
Conversion:	Adrenaline $(\mathrm{ng} / \mathrm{ml}) \times 5.46=$ Adrenaline ($\mathrm{nmol} / \mathrm{l}$) Noradrenaline ($\mathrm{ng} / \mathrm{ml}$) $\times 5.91=$ Noradrenaline ($\mathrm{nmol} / \mathrm{l}$						
Content:	Acidic buffer with non-mercury stabilizer, spiked with defined quantity of adrenaline and noradrenaline						
BA R-6611	ACYL-BUFF Acylation Buffer - Ready to use						
Content:	Buffer with light alkaline pH for the acylation						
Volume:	$1 \times 20 \mathrm{ml} /$ vial, white cap				15		
BA R-6614	COENzYME Coenzyme - Ready to use						
Content:	S-adenosyl-L-methionine						
Volume:	$1 \times 4 \mathrm{ml}$ vial, purple cap						
BA R-6615	ENZYME Enzyme - Lyo						
Content:	Catechol-O-methyltransferase						
Volume:	4 vials, pink cap						
BA R-6618	EXTRACT-PLATE\| 48 Extraction Plate - Ready to use						
Content:	2×48 well plates coated with boronate affinity gel in a resealable pouch						
BA R-6619	HCL Hydr		Poric Acid	Ready to u			
Content:	0.025 M Hydrochloric Agid, yellow coloured						
Volume:	$1 \times 20 \mathrm{ml} /$ vial, dark green cap						

4.2 Additional materials and equipment required but not provided in the kit

- Calibrated precision pipettes to dispense volumes between $1-750 \mu \mathrm{l} ; 1 \mathrm{ml}$
- Microtiter plate washing device (manual, semi-automated or automated)
- ELISA reader capable of reading absorbance at 450 nm and if possible $620-650 \mathrm{~nm}$
- Shaker (shaking amplitude 3 mm ; approx. 600 rpm)
- Temperaturecontrolled incubator $\left(37^{\circ} \mathrm{C}\right)$ or similar heating device
- Absorbent Material (paper towel)
- Water (ddeionized, distilled, or ultra-pure)
- Vortes mixer

5. Sample collection and storage

Storage: up to 6 hours at $2-8^{\circ} \mathrm{C}$; for longer periods (up to 6 months) at $-20^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$.
Advice for the preservation of the biological sample: to prevent catecholamine degradation, add EDTA (final concentration 1 mM) and sodium metabisulfite (final concentration 4 mM) to the sample.

6. Test procedure

Allow reagents and samples to reach room temperature and mix thoroughly by gentle inversion before use. Duplicate measurements are recommended. It is recommended to number the strips of the microwell plate before usage to avoid any mix-up.
The binding of the antisera and of the enzyme conjugate and the activity of the enzyme are temperature dependent. The higher the temperature, the higher the absorption values will be. Varying incubation times will have similar influences on the absorbance. The optimal temperature during the Enzyme Immunoassay is between $20-25^{\circ} \mathrm{C}$.
\bigwedge In case of overflow, read the absorbance of the solution in the wells within 10 minutes, using a microplate reader set to 405 nm

6.1 Preparation of reagents

Wash Buffer

Dilute the 20 ml Wash Buffer Concentrate with water (deionized, distilled, or ultra-pure) to a final Qolume of $1,000 \mathrm{ml}$.
Storage: 2 months at $2-8^{\circ} \mathrm{C}$

Enzyme Solution

Reconstitute the content of the vial labelled 'Enzyme' with 1 ml water (deionized, distilled, or ultra-pure) and mix thoroughly. Add 0.3 ml of Coenzyme followed by 0.7 ml of Adjustment Buffer, the total volume of the Enzyme Solution is 2.0 ml .

The Enzyme Solution has to be prepared freshly prior to the assay (not longer than 10 - 15 minutes in advance). Discard after use!

Adrenaline Microtiter Strips and Noradrenaline Microtiter Strips

In rare cases residues of the blocking and stabilizing reagent can be seen in the wells as small, white dots or lines. These residues do not influence the quality of the product.

Acylation Reagent

The Acylation Reagent (BA E-6612) has a freezing point of $18.5^{\circ} \mathrm{C}$. To ensure that the Acylation Reagent is liquid when being used, it must be ensured that the Acylation Reagent has reached room temperature and forms a homogeneous, crystal-free solution before being used.

6.2 Sample preparation

The 2-CAT high sensitive ELISA is a flexible test system for various biological sample types and volumes. It is not possible to give a general advice how to prepare the samples. However, the following basics should help the researcher to fit the protocol to his specific needs.

- Avoid excess of acid: excess of acid might exceed the buffer capacity of the extraction buffer. A pH >7.0 during the extraction is mandatory.
- Prevent catecholamine degradation by adding preservatives to the sample (see 5 . Sample collection and storage).
- Avoid chaotropic chemicals like perchloric acid. The high salt content might reduce the recovery of catecholamines. If your samples already contain high amounts of perchloric acid, neutralize the sample prior to the extraction step.
- Tissue samples canthe homogenised in 0.01 N HCl in the presence of EDTA and sodium metabisulfite. Under these conditions, catecholamines are positively charged which reduces binding to proteins and optimizes solubility.
- Avoid samples that contain substances with a cis-diol structure. These will reduce the recovery of the catecholarmifes.
- It is advisable to perform a "Proof of Principle" to determine the recovery of the catecholamines in your samples. Prepare a stock solution of adrenaline and noradrenaline. Add small amounts (to change the native sample matrix as less as possible) of the stock solutions to the sample matrix and check the recovery.
- The used sample volume determines the sensitivity of the test. Determine the sample volume needed to determine the catecholamines in your sample by testing different amounts of sample volume.

If you need any support in establishing a protocol for your specific purposes, do not hesitate to contact the manufacturer directly!

6.3 Extraction and acylation

The 2-CAT high sensitive ELISA offers a flexible test system for various biological sample types and volumes.
Step 1 of the extraction procedure depends on the sample volume:

- in case you have sample volumes between 1 - 100μ follow 1.1
- in case you have sample volumes between 100 - 500μ follow $\mathbf{1 . 2}$
- in case you have sample volumes between 500 - 750μ follow 1.3

W Within a run it is only possible to measure samples with the same volume!

$$
\begin{aligned}
& \text { Sample volume } 500-750 \mu \mathrm{l} \\
& \text { Pipette into the respective wells } \\
& \text { of the Extraction Plated } \\
& \mathbf{2 0} \mu \mathrm{l} \text { of standards, } 20 \mu \mathrm{I} \\
& \text { controls and } 500-750 \mu \mathrm{l} \\
& \text { sample. } \\
& \text { Fill up each nell with water } \\
& \text { (deionized, distilled, or ultra- } \\
& \text { pure) to a final volume of } \\
& 750 \mu \mathrm{He} \text {.g. } 20 \mu \text { l standard plus } \\
& 730 \mu \mathrm{l} \text { water (deionized, distilled, } \\
& \text { orultra-pure)]. }
\end{aligned}
$$

2. Pipette $\mathbf{2 5} \boldsymbol{\mu}$ I of TE Buffer into all wells.
3. Cover the plate with Adhesive Foil. Shake $\mathbf{6 0} \mathbf{~ m i n}$ at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).
4. Remove the foil and empty the plate. Blot dry by tapping thecinverted plate on absorbent material.
5. Pipette $\mathbf{1 ~ m l}$ of Wash Buffer into all wells.
6. Shake $5 \mathbf{~ m i n}$ at RT $\left(20-25^{\circ} \mathrm{C}\right.$) on a shaker (approx. 600 rpm).
7. Blot dry by tapping the inverted plate on absorbent material.
8. Wash one more time as described (step 5,6 and 7)!
9. Pipette $\mathbf{1 5 0} \boldsymbol{\mu}$ I of Acylation Buffer into all wells.
10. Pipette $\mathbf{2 5} \boldsymbol{\mu l}$ of Acylation Reagentinto all wells.
11. Shake $\mathbf{2 0} \mathbf{~ m i n}$ at RT $\left(20-25^{\circ} \mathrm{C}\right)$ ©n a shaker (approx. 600 rpm).
12. Empty the plate and blot dry by tapping the inverted plate on absorbent material.
13. Pipette $\mathbf{1} \mathbf{~ m l}$ of Wash Buffer into all wells.
14. Shake 5 min at RT ($20^{\circ}-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).
15. Blot dry by tapping the inverted plate on absorbent material.
16. Wash one more time as described (step $13,14,15$).
17. Pipette $150 \mu \mathrm{l}$ of Hydrochloric Acid into all wells.
18. Cover plate with Adhesive Foil. Shake 10 min at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).

6.4 Enzymatic Conversion

1. Pipette $\mathbf{1 4 0} \boldsymbol{\mu l}$ of the extracted standards, controls and samples into the respective wells of the Microtiter Plate.
2. Add $\mathbf{5 0} \boldsymbol{\mu l}$ of Enzyme Solution (refer to 6.1) to all wells.
3. Cover plate with Adhesive Foil. Shake 1 min at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).
4. Incubate for $\mathbf{2} \mathbf{h}$ at $37^{\circ} \mathbf{C}$.

The following volumes of the supernatants are needed for the subsequent ELISA:

| Adrenaline | $\mathbf{9 0} \boldsymbol{\mu l}$ | $\mathbf{~ N o r a d r e n a l i n e ~} \boldsymbol{\mu l}$ |
| :--- | :--- | :--- | :--- |

6.5 Adrenaline and Noradrenaline ELISA

1. Pipette $\mathbf{9 0} \boldsymbol{\mu l}$ of standards, controls and samples from the Enzyme Plate (refer to 6.4) inta the respective pre-coated Microtiter Strips (${ }^{* 1}$).
2. Pipette $\mathbf{5 0} \boldsymbol{\mu l}$ of the respective Antiserum (${ }^{* 2}$) into all wells.
3. Cover the plate with Adhesive Foil. Shake 1 min at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).

4. Remove the foil. Discard or aspirate the content of the wells. Wash the plate $\mathbf{4 0 x}$ by adding $\mathbf{3 0 0} \boldsymbol{\mu l}$ of Wash Buffer, discarding the content and blotting dry each time by tapping the inverted plate on absorbent material.
5. Pipette $\mathbf{1 0 0} \boldsymbol{\mu l}$ of Enzyme Conjugate into all wells.
6. Incubate $\mathbf{3 0} \mathbf{~ m i n}$ at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpnf
7. Discard or aspirate the content of the wells. Wash the plate $4 \times b y$ adding $\mathbf{3 0 0} \boldsymbol{\mu l}$ of Wash Buffer, discarding the content and blotting dry each time by tapping the inverted plate on absorbent material.
8. Pipette $\mathbf{1 0 0} \boldsymbol{\mu l}$ of Substrate into all wells.
9. Incubate $\mathbf{2 0 - 3 0} \mathbf{~ m i n}$ at RT ($20-25^{\circ} \mathrm{C}$) on a shaker (approx. 600 rpm).
$\widehat{4}$ Avoid exposure to direct sunlight!
10. Pipette $\mathbf{1 0 0} \boldsymbol{\mu l}$ of Stop Solution into all wêts.
11. Read the absorbance of the solution in the wells within 10 minutes, using a microplate reader set to 450 nm (if available a reference wavelength between 620 nm and 650 nm is recommended).
\ (*1): Adrenaline Microtiter Strips, Noradrenaline Microtiter Strips
$\left({ }^{* 2}\right)$: Adrenaline Antiserum; Noradrenaline Antiserum

7. Calculation of results

The standard curve from which the concentrations in the samples can be read off, is obtained by plotting the absorbance readings (calculate the mean absorbance) measured for the standards (linear, y-axis) against the corresponding standard concentrations (logarithmic, x-axis).
Use a non-linear regression for curve fitting (e.g. 4-parameter, marquardt).
\bigwedge This assay is a competitive assay. This means: the $O D$-values are decreasing with increasing concentrations of the analyte. OD-values found below the standard curve correspond to high conceqtrations of the analyte in the sample and have to be reported as being positive.

The concentrations of the samples taken from the standard curve have to be multiplied by a correction factor.

$20 \mu \mathrm{l}$ (volume of standards extracted)

Correction factor $=$ sample volume ($\mu \mathrm{I}$) extracted

Example:

$750 \mu \mathrm{l}$ of the sample is extracted and the concentration taken from the standard curve is $0.15 \mathrm{ng} / \mathrm{ml}$ noradrenaline.
Correction factor $=20 / 750=0.027$
Concentration of the sample $=0.15 \mathrm{ng} / \mathrm{ml} \times 0.027=0.004 \mathrm{ng} / \mathrm{ml}=4 \mathrm{pg} / \mathrm{ml}$ noradrenaline

Conversion

Adrenaline ($\mathrm{ng} / \mathrm{ml}$) $\times 5.46=$ Adrenaline ($\mathrm{nmol} / \mathrm{l}$)
Noradrenaline $(\mathrm{ng} / \mathrm{ml}) \times 5.91=$ Noradrenaline $(\mathrm{nmol} / \mathrm{l})$

7.1 Quality control

The confidence limits of the kit controls are indicated on the QC-Report.
8. Assay characteristics

Analytical Specificity (Cross Reactivity)	Substance	Cross Reactivity (\%)	
		Noradrenaline	Adrenaline
	Derivatized Adrenaline	0.14	100
	Derivatized Noradrenaline	100	0.20
	Derivatized Dopamine	0.2	<0,0007
	Metanephrine	< 0.003	+ 0.64
	Normetanephrine	0.48	- ${ }^{\text {a }} 0.0009$
	3-Methoxytyramine	< 0.003	$\mathrm{J}^{1}<0.0007$
	3-Methoxy-4-hydroxyphenylglycol	0.01	0.03
	Tyramine	$<0.003{ }^{\text {e }}$	<0.0007
	Phenylalanine, Caffeinic acid, L-Dopa, Homovanillic acid, Tyrosine, 3-Methoxy-4-hydroxymandelic acid	<0.003	< 0.0007
	Adrenaline	Q	
Sensitivity (Limit of Detection)		Noradrenaline	
	$0.25 \mathrm{ng} / \mathrm{ml} \times \mathrm{C}^{*}$	$0.1 \mathrm{ng} / \mathrm{ml} \times \mathrm{C}$	

Analytical Sensitivity (750μ l undiluted sample)	Adrenaline	Noradrenaline
	$6.6 \mathrm{pg} / \mathrm{ml}$	$2.6 \mathrm{pg} / \mathrm{ml}$
Functional Sensitivity (750μ undiluted sample)	Adrenaline	Noradrenaline
	$10 \mathrm{pg} / \mathrm{ml}$	$4 \mathrm{pg} / \mathrm{ml}$

Precision				
Intra-Assay Human EDTA-Plasma				
	Sample	$a n \pm 3$ SD (pg/ml)	SD (pg/ml)	CV (\%)
Adrenaline	high ib	1,329.3 ± 372.6	124.2	9.3
	medigin	412.1 ± 129.6	43.2	10.5
	row	37.9 ± 19.5	6.5	17.1
Noradrenaline	Wigh	1,377.4 488.6	161.2	11.7
	medium	502.6 ± 126.9	42.3	8.4
	low	32.7 ± 15.3	5.1	15.6

Intra-Assay Cell Culture Medium (RPMI)				
	Sample	Mean ± 3 SD (pg/ml)	SD (pg/ml)	CV (\%)
Adrenaline	high	1,649.6 ± 555.0	185	11.2
	medium	526.2 ± 186.6	62.2	11.8
	low	38.7 ± 18.9	6.3	16.3
adradrenaline	high	$2,027.8 \pm 712.5$	237.5	11.7
	medium	716.5 ± 179.7	59.9	8.4
	low	46.0 ± 16.8	5.6	12.2

Recovery	Mean (\%)	Range (\%)	SD (\%)	CV (\%)
Adrenaline				
Human EDTA-Plasma	104.0	$89.4-128.3$	13.1	12.6
Cell Culture Medium	95.5	$81.6-109.6$	8.3	8.7
Noradrenaline			8.0	6.9
Human EDTA-Plasma	116.5	$104.8-125.6$	17.1	17.7
Cell Culture Medium	96.7	$70.6-124.7$		

\triangle For literature or any other information please contact your local supplier.
\triangle The liability of the manufacturer shall be limited to the replacement of defective products. The manufacturer takes no liability for any damages or expenses arising directly or indirectly from the use of this product.

Symbols:

Storage temperature Use-by date		\cdots	Manufacturer	$\sqrt{\Sigma}$	Contains sufficient for <n> tests
		LOT	Batch code		
	Consult instructions for use	CONT	Content		
\bigwedge	Caution	REF	Catalogue number	侖	Distributor
W	Date of manufacture			RUO	For research use only!

